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Abstract 

By making use of the fact that the de-Sitter metric corresponds to a hyperquadric in a 
five-dimensional flat space, it is shown that the three Robertson-Walker metrics for 
empty spacetime and positive cosmological constant, corresponding to 3-space of 
positive, negative and zero curvative, are geometrically equivalent. The 3-spaces corre- 
spond to intersections of the hyperquadric by hyperptanes, and the time-like geodesics 
perpendicular to them correspond to intersections by planes, in all three cases. 

1. Introduction 

The purpose of this work is to investigate the geometrical properties of 
the Robertson-Walker type solutions of 

R~v = Ag~v (1.1) 

In Einstein's theory these solutions correspond to empty universes and are 
devoid of  physical interest. I f  the real universe were such that I A[ >> ~pc 2 
(~c = 8rcG/e 4) (and this inequality seems highly unlikely on the basis of the 
observational data), an empty space solution (with matter treated as test 
particles) could be a good approximation to the actual geometry of  the 
universe. A more plausible physical justification for the study of cosmo- 
logical solutions of  (1.1) comes from Hoyle-Narl ikar creation-field 
cosmology (Hoyle, 1963); if the density is required to remain constant this 
theory reduces to (1.1) with A = rcpc2/2. This interpretation will be discussed 
more fully in a subsequent paper. In any case the geometrical aspects of 
(1.1) are sufficiently interesting to warrant attention apart from their 
possible relevance to physics. 

The Robertson-Walker metrics are of the form 

dt 2 - SZ(t) 1 + (d~ 2 + i2(dO 2 + sin 20d~oZ)) (1.2) 
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and equat ion (I.1) reduces to 

~;2 = - k  + A S Z / 3  (1.3) 

The curves o f  constant  (L 0, ~0) are time-like geodesics or thogonal  to the 
space-like hypersurfaces o f  constant  t. These space-like hypersurfaces have 
positive, negative or  zero curvature according as k = +_1 or  zero. 

The solutions o f  (1.3) are 
(a) A negative. Choose  units so that  A = - 3  

k = - 1  ; S = cos t (1.4) 

(b) A positive. Choose  units so that  A = 3. 

l 
k = +1 ; S = cosh t (1.5) 

k = 0; S = exp t (1.6) 

k = - I  ; S = sinh t (1.7) 

Make  the following change of  radial variable: 

k = +1 ; tan (p/2) = f/2 

k = O ;  p = f  

k = - 1  ; tanh (p/2) = f/2 

and we obtain the solutions (1.2) in the form 

(1.8) 
(1.9) 

(1.1o) 

(a) A = - 3  
dt  2 - cos z t ( d p  2 + sinh 2 p dr2 z) (1.11) 

k = - l ;  

(b) A = 3 . d t  2 - cosh 2 t (dp  2 + sin2p dl22) (1.12) 
k = + l  ' 

k = O; d t  2 _ eZt (dp2 + p2 dr22) (1.13) 

k = - 1 ,  d t  2 - s i n h Z t ( d p  z + s i n h 2 p d O  2) (1.14) 

The metric (1.13) is the well-known de-Sitter metric. I t  is, o f  course, 
equivalent to  the s t a t i c  de-Sitter metric 

dr  2 
( 1 - r 2 ) d z  z t - r  2 r 2 d 0 2  (1.15) 

the coordinate  t ransformat ion connecting (1.13) and (1.15) being 

e zt = e 2~ (1 - r2), p = r e  -~ (1.16) 

As is well known,  the metric (1.15) is that  o f  the hyperquadrie  

~h 2 + r/22 + r/a z - q42 + q52 = r 2 - ~/42 + q52 = 1 (1.17) 
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in a flat 5-space with signature ( + + + - + ) ,  metric 

2 + a//2 2 + a/ /3'  - d / / ,  2 + a//5 (1.18) 

The parameters//1 . . . . .  //s are defined by 

//l =rsinOcosO, //z=rsinOsin~o, q3=rcosO (1.19) 

//5 + //4 = e ~ (  1 - rZ) 1/2 

The identity (1.17) and the equality (apart from an overall minus sign) of 
(1.15) and (1.18) are easily verified. 

The subject matter of  this introduction is dealt with in greater detail in 
the literature. See, for instance, Adler, Bazin & Schiffer (1965), Bondi 
(1960), and Fock (1964). 

In fact, all three metrics (1.12)-(1.14) are the metric of the hyperquadric 
in different coordinate systems. This equivalence is truly remarkable since 
in conjunction with the interpretation of  the dp = dO = d~o = 0 lines as 
world-lines of  matter the three metrics refer to completely different cosmo- 
logical situations (respectively: 3-space positively curved (closed); flat; 
negatively curved/infinite in time with expansion preceded by contraction; 
infinite in time continually expanding; creaction at t = 0 followed by 
expansion). The aim of the present paper is to provide a satisfactory visual 
interpretation of  the geometrical situation. 

2. Geometry o f  the Hyperquadric 

Take a section of the hyperquadric (1.17) defined by 0 = const, ~o = const. 
We get a two-dimensional subspace--a quadric in a flat 3-space with 
coordinates (r, //4, //5). We actually get only half the quadric since r takes 
only the positive values. We include the negative values by adopting the 
convention that ( -r ,O,9 , t )  means (r,~r - 0,Tr + q~,t). The equation of  the 
quadric is 

r 2 - - t / 4  2 + I15 2 = 1 (2.t) 

(a hyperboloid of one sheet), and the metric of the 3-space is 

dr 2 - d//, z + d//5 2 

In terms of the parameters (t, p) given by 

the metric (2.2) is 

(2.2) 

r = cosh t sin p] 
q, sinht ~ (2.3) 
//s cosh t sin p) 

cosh 2 t .dp 2 - d t  z (2.4) 
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Any plane through the origin of (r, q4,*/5)-space can, by a suitable 
S0(2,1) rotation, be taken to be one of the two planes 

~5 = 0 (t  = 0)  I (2 .5 )  
o r  */4 = 0 (p  = 0 ) )  

From the metric (2.4) we readily obtain the geodesic equations 

dt2/ds 2 + s inht  cosht (dp/ds)Z= 0 t 
(2.6) 

dp2/ds 2 + 2 tanh t(dt/ds) (dp/ds) oJ 
which are clearly satisfied by the curves t = 0 (p a linear function of s) and 
p = 0 (t a linear function of s), so that the curves obtained by intersection 
of the quadric and the planes (2.5) are geodesics. Hence the intersection of 
the quadric by any plane through the origin of (r, */4, */s)-space is a geodesic. 
Conversely, every geodesic on the quadric lies in some plane through the 
origin of (r,t/4,qs)-space. 

We are, of course, interested not so much in the quadric (2.1) as in the 
hyperquadric (1.17), which in terms of t and p has metric 

-d t  2 + cosh 2 t(dp 2 + sin2p dfF) (2.7) 

(which, incidentally, demonstrates that (1.12) is a valid form for the metric 
of the hyperquadric, so (1.12) and (1.I3) are equivalent). The geodesic 
equations for this metric reduce to (2.6) under the restriction to constant 
0 and q~. Thus every geodesic o f  the quadrie is also a geodesic of  the 
hyperquadric. 

3. Coordinate Systems on the Quadric 

Parametrise the quadric 

r 2 - */4 2 + */s 2 = 1 (3.1) 

by the coordinates (r, t) where 

t = tanh -~ (r/4/r/5) (3.2) 

The coordinate curves r = constant and t = constant are then, respectively, 
the intersections of the quadric with the planes parallel to the (*/4, qs)-plane, 
and the planes */4 + K*/5 = 0 (see Fig. 1). The generators of the quadric are 
null lines. The two generators through (r,*/4,*/5)= (+_1,0,0) are the inter- 
sections of the quadric with the planes */4 = +*/5 (corresponding to t = +~).  
Thus the null generators of (I, 0, 0) and (-1,0, 0) are coordinate singularities. 

From (3.1) and (3.2), 
t/4 2 = (1 - r 2) sinh 2 t t 
*/5 2 (1 r 2) cosh z t j  (3.3) 
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so that 
rZ dr 2 

dr/5 2 - dr/, 2 = ~-~7  ~ (1 - r2 )d t  2 

and the metric of the quadric in terms of (r, t) is 

dr  2 
1 - r  2 ( l - r  e ) d t  2 (3.4) 

The corresponding metric of  the hyperquadric is obtained simply by 
restoring the r 2 dr2 2 term, and we arrive at the static de-Sitter metric (1.15). 

Thus in Fig. 1 we have a visualisation of the coordinate system we are 

% 

Figure I. De-Sitter's static universe 

employing when we say that the static de-Sitter metric is the metric of a 
hyperquadric. Note that the 4-space of  the static de-Sitter metric is not the 
whole of  the hyperquadric but only that portion bounded by null generators 
through the points (+_1,0,0). Note that only one of the r = constant curves 
is a geodesic (r = 0)--world-lines of matter in the form of 'test particles' in 
a stat ic  de-Sitter world will not be simply related to the coordinate system. 
In fact a static de-Sitter world cannot contain a static distribution of  test 
particles. 

I f  we extend the coordinate system we have set up to the regions ]r I > 1 
the r = constant curves become space-like and the t = constant curves 
become time-like. We therefore change the notation by what amounts to a 
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Figure 2. Universe with k = -1 

rotation of the whole coordinate net through a fight angle about the 
q4-axis (Fig. 2). Define 

P = tanh -~ (rill4) (3,5) 

and express the metric in terms of (qs, P). The manipulations are formally 
the same as those leading to (3.4), and we find that the metric is 

2 

t']5 2 _  1 
+ ( q 5 2 - 1 ) d p  2 (3.6) 

In terms of the new parameter t defined by 

r/5 = cosh t (3.7) 

(which does not alter the curves of  Fig. 2) we get 

- d t  z + sinh z t dp ~ (3.8) 

We have only to include r2df2 z = (~152 - 1)sinhZ p d O  z = sinhZ tsinhZ pdf22 
to obtain the corresponding form for the metric of the hyperquadric: 

- d r  2 + sinh z t(dp 2 + sinh z p) dO z (3.9) 

Thus we have obtained (1.14) as the metric of the hyperquadric. Note 
that the Robertson-Walker 4-space corresponding to (1.14) corresponds 
only to the part of  the hyperquadric for which r/s > 1. Note that the 
p = constant curves in Fig. 2 are intersections of the quadric by planes 
through the origin (r + Kq4 = 0), so are geodesics. 
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Figure 3. Universe with k = +1 
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The  mos t  na tura l  coordinate  systems on the quadric  are obta ined by 
taking the coordinate  curves to be intersection of  the quadric  by  planes 
t/, = constant  and t/5 + K r  = 0 (i.e. th rough  the symmet ry  axis o f  the 
quadric). Such a system covers the whole quadric  wi thout  singularities 
(Fig. 3). Define 

p = tan -1 (riffs) (3.10) 

and use (p,t/4) as coordinates.  Then  

r z = (1 + q42) sin z p 

r/s 2 = (1 + rl ,Z)cosZp 

dr z + dqs 2 = -t/42 dr/,2/(1 + t/42) 2 + (1 + tl4)Zdp 2 

and the metric  is therefore 

dr/42 t- (1 + r/42) dp 2 
1 + t/4 z 

In  terms of  the new variable t defined by 

~/4 = sinh t (3.11) 

we get 

- dt 2 + c o s h 2 t . d p  z (3.12) 
9 
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Figure 4. Universe wi thk=0 

For  the corresponding metric of  the hyperquadric we add on 

r 2 dr2 z = (1 + t/42) sin 2 p d f F  = cosh 2 t sin 2 p dO z 
to obtain 

- d t  2 + cosh 2 t (dp2 + sin z p dO2) (3.13) 

Note that it is not possible for a light ray to circumnavigate the closed 
3-space in this model, since the null geodesics are represented by straight 
lines on the quadric. 

The conventional (expanding, flat 3-space) de-Sitter metric (1.13) 
corresponds to the intersection of the quadric by the planes ~/4 + t/5 = con- 
stant (which are parabolae in the (r, q4,t/5)-space) and the planes 
~14 + ~Is + K r  = 0 (which pass through the origin and therefore yield 
geodesics) (Fig. 4). We define the parameters p and t: 

p = r l ( . ,  + ,l ,)l  (3.14) 
e t = ~ 4 + t / 5  / 

f 

Then 
r = p e  t 

and 
1 __?.2 

r/4 - t / s  = - -  = (1  - p 2  e 2 t ) e - ~  
ri'4 + r/s 

Differentiating these expressions and forming the metric 

dr  2 + (dtls + dr/,) (d~s - dr/a) 
we get 

- d t  2 + e 2t dp  2 (3.15) 
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to which we have to add rZdf22= p2eZtdf22 to obtain just (1.13). Note 
that the whole 4-space corresponds to the part of the quadric above the 
plane r14 = r .  Note also that the null generator through (1,0,0) shown 
broken in Fig. 4 is an event horizon in the sense that a generator through 
any point in the region r > 1 will never interesect the curve p = 0 (an 
observer moving along p = 0 will never observe events for which Ir[ > 1). 
The same event horizon is also indicated in Figs. 2 and 3. 

4. The Group S0(2,1)  

The group of  rotations S0(2,  1) in the (r,t/4,r/5)-space (metric ( + - + ) )  
leaves the quadric invariant (the quadric is the analogue of a 'sphere' in the 
space with indefinite metric). It is illuminating to demonstrate those 
particular S0(2,1)  rotations that leave the various coordinate lines un- 
changed. Consider the coordinate system (Fig. 1) corresponding to the 
static de-Sitter metric and rotate about the r-axis: 

Then 

(r/4) { c ° s h z s i n h z ] ( ' 1 4 ]  (4.1) 
r/5 "+ \ s inhz  cosh)~] VIs/ 

tanh t = q_4 -> (r/4)/5) + tanh Z 
r/5 1 + (r/,/r/5) tanh)~ = tanh (t + Z) (4.2) 

so that the rotation (4.1) corresponds to 

r -+ r, t - + t +  Z (4.2) 

This corresponds to the fact that the metric is 'statiC--there is no 
'privileged' value of  t (this is not apparent in Fig. 1 where t = 0 is a circle 
and other t = constant curves appear as ellipses. In fact they are a// circles ; 
the distortion is due to the impossibility of representing the geometry of  
space with metric ( + - + )  adequately in Euclidean 3-space). 

Applying to Fig. 2 a rotation about the r/5-axis 

t/4 -+ksinh)~ cosh)J  q4 
we get 

r 
tanh p = - -  -+ tanh (p + Z) 

74 

so the rotation (4.3) has the effect 

P-+ P + Z, t -+ t (4.4) 

This illustrates the absence of a privileged p = constant curve. For Fig. 3 
we carry out the rotation about the q4-axis 

~/5 -+ k-sin 0 cos O] ~15 
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Thus (recalling tanp = r//73, sinht =/Tk), 

p -+ p + 0, t ~ t (4.6) 

The absence of a privileged p = constant curve in Fig. 4 is demonstrated 
by carrying out a rotation about the common intersection of  the planes 

~14 +/Ts + Kr = 0 (4.7) 

This transformation is of  the form 

/']4 - ' ~  1 + ~2/2 ~2/2 /74 (4.8) 
/Ts - - ~ 2 / 2  1 - ~ 2 / 2 /  /Ts 

(It is easily verified that the matrix here belongs to S0(2,1) and that it 
maps the set of planes (4.7) onto itselL) 

We find that/74 +/Ts (and therefore t) remains invariant and that 

r r + c¢(/74 +/Ts) p -+ --> - p + ~ (4.9) 
/74 +/73 /74 + qs 

Finally, we note that the shape of the coordinate net in Fig, 4 is un- 
changed by a time translation combined with a dilatation of 3-space. This 
transformation is simply rotation about the r-axis 

(,.)  oosh   410, 
~/3 "->\sinhz coshz]  I/5 

so that by (3.14), 

t--> t + Z, p -+ eZ p (4.11) 

5. The (3 + 2) de-Sitter Space 

We have shown that the three metric (1.12)-(1.14) correspond to 
different coordinate systems on the hyperquadric 

~AB/TAq B = 1 = r 2 - - / 7 4 2  -q-/752 ( 5 . 1 )  

ina 5-space with metric ~7an = d g ( + + + - + ) .  To deal similarly with negative 
A we make use of  the hyperquadric 

~AB~A qB  ~--- 1 = - - r  2 +/742 + /752 (5.2) 

in a 5-space with metric ~an = d g ( - - - + + ) .  The corresponding quadric in 
(r,/74,/75)-space is different from the previous case in that the roles of r and 
/74 are interchanged. It is immediately apparent that this quadric contains 
closed time-like geodesics (Fig. 5). This is usually taken to mean that 
negative A is non-physical. However, since a metric gives no information 
about the topological properties of the hyperquadric it is quite possible to 
consider it as a hypersurface with infinitely many sheets, so that in fact a 
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Figure 5. Universe with k = -1 and negative A 
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closed time-like line passing once round  the hyperboloid would return to a 
different event having the same (~/4, ~15, r)-coordinates as its initial event. 

We set up a coordinate  system having the same fo rm as that  o f  Fig. 1, 
defining (p, t) by  

p = tanh - I  (r/~ls)l 
(5.3) 

1/4 sin t ) 
/ 

The metric for  the hyperquadric  becomes 

dt 2 - cos 2 t dp 2 (5.4) 
to which we must  add 

- r  2 d fF  = - c o s  2 t sinh z p dr22 

to obtain (1.11). We see that  the question o f  closed time-like lines does not  
arise because the universe implied by (1.11) has a beginning and an end (at 
t = +re/2) so the physically relevant port ions of  the time-like geodesics are 
only halves o f  the closed curves. 
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